Cancer Support

Dear Friends
Phyto Power High Rez
Phyto Power is comprised of several species of wildcrafted blueberries, Rose hip, and Dandelion, including their leaves, stems, roots, and flowers. Growing wild and strong in remote areas of Alaska, these berries and plants are handpicked at the peak of their phytonutrient potential. For centuries, indigenous tribes of Alaskan Natives have used these power-filled berries and plants for their daily nourishment as well as ceremonial and medicinal purposes.

  • Three species of Rosehip, wildcrafted, whole fruit and seeds (100% w/w), refractory dried, three Rosa species, 200mg per capsule.
  • Four species of Dandelion, wildcrafted, aerial parts (90% w/w), root (10% w/w) with flower, refractory dried, four Taraxacum species, 200mg per capsule.
  • Four species of Blueberry, wildcrafted, fruit (>90% w/w), leaves and stem (<5% w/w), refractory dried, four Vaccinium species, 100mg per capsule.

Food Science

Alaskan wildcrafted berries and plants supply ample antioxidants, anti-inflammatory, and anti-microbial factors (Grace et al., 2014; Youself et al., 2013).

Phyto Power is indeed powerful. In fact, Dinstel et al. (2013) found the antioxidant levels of Alaska’s wild berries to be extremely high, ranging from 3 to 5 times higher in ORAC values than cultivated berries from 48 other states. For example, cultivated blueberries have an ORAC scale of 30. Alaska wild dwarf blueberries measure 85. When the berries were dehydrated, per gram the ORAC values increased.

The Alaskan red Rose hip fruit and seeds, blue-purple Blueberries with twigs and leaves, and the Dandelion’s green leaves, stems, roots and yellow flowers are filled with potent phytonutrients. These vibrant and nutritious phytochemicals protect and enhance the health of both plants and humans (Joseph, Nadeau, & Underwood, 2003). James Duke’s (2000) substantial USDA phytochemical database illustrates the mechanism of the world of plants in the support and maintenance of our health (p. 2).

Scientific evidence links the lack of sufficient nutrients and colorful phytochemicals in our daily diets to the rise of chronic inflammation, one of the causes of metabolic syndrome, which includes cardiovascular, type 2 diabetes, as well as various cancers (Joseph, 2003; Ridker et al., 2000, 2003; Kristo et al., 2016, Ovadje et al., 2016, respectively). For this reason, García-Lafuente et al. (2009) conclude that flavonoids from berries and plants behave as anti-inflammatory agents in our body, calling for more research on the implication of these effects as protection against cancer and cardiovascular issues.

The effect of Blueberries, Rose hip, and Dandelion on Metabolic Syndrome’s risk markers is well documented and researched (Choi et al., 2010; Basu et al., 2012). For example, Andersson et al. (2011) demonstrated in a randomized, double-blind, crossover study* with 31 obese individuals that daily consumption of rose hip (drink) significantly decreased plasma cholesterol and systolic blood pressure, effectting the risk markers of type 2 diabetes and cardiovascular disease. In 2012, Andersson et al. conducted a study with lean and obese mice that were fed high-fat diet and a dietary supplement of rose hip powder. The supplement of rose hip prevented and reversed the increase in body weight. Andersson et al. (2012) concluded that rose hip supports the prevention of diabetic state in the mouse and that downregulation of the hepatic lipogenic program is one of the mechanisms underlying this antidiabetic effect.

Choi et al.’s (2010) demonstrated that supplementing rabbits that are fed with high cholesterol diets with dandelion leaf and root positively changed plasma antioxidant enzyme activities and lipid profiles, offering “hypolipidemic and antioxidant effects.”

These research findings are not new amongst scientists. Johnson et al. (1994) discovered that plants and their biologically active constituents contribute protective and anti-carcinogenic effects (Table 1, p. 193). These ‘dietary phytoprotectants’ in foods (p. 194) have continually shown in research to impart an important anti-inflammatory effect (Vendrame et al., 2015; Joseph et al., 2014), act as powerful anti-oxidants (Jedrejek et al., 2017; Skrovankova et al., 2015), and offer protection and inhibition of certain cancers (Zhan et al., 2016; Yang & Li, 2015; Li et al., 2009; Seeram, 2008; Sigstedt et al., 2008).

Although the exact mechanisms and reasons (the why) of these promising effects are still in the process of discovery, the findings suggest a regular habit of dietary supplementation with these plants and berries.

Blueberries, Rose hip, and Dandelion demonstrate in research a potential effect on different cancers. For example, blueberries are shown to inhibit growth and metastatic potential (Adams et al., 2010; Liu et al., 2013), and manage gastrointestinal tract cancers (Bishayee et al., 2016). Rose hip has shown to effect human brain cell proliferation (Cagle et al., 2012) and offer antiproliferation effect on Caco-2 human colon cancer (Jiménez et al., 2016). Dandelion was found to induce apoptosis in drug-resistant human melanoma cells (Chatterjee et al., 2011; see also Jeon et al., 2008 and Hu et al., 2003 for further reading on dandelion).

The Rose hip has a rich phytochemical profile shown to also support many different mechanisms in the human body. For example, the red berry of Rose hip is known for its antioxidant protection (Widen et al., 2012), supporting weight loss by a possible mechanism of decreasing abdominal visceral fat (Nagatomo et al., 2015). Andersson et al. (2011) examined the Rose hip antidiabetic effect, as well as the effect of Rose hip on risk markers of type 2 diabetes and cardiovascular disease in obese persons (Andersson et al., 2012). Rose hip is also found to support the liver (Nagatomo et al., 2013; Sadeghi et al., 2016), and offer relief from joint pain (Christensen et al., 2008; Willich et al., 2010; Winther et al., 2005).

For further study of the Rosa canina see Chrubasik et al. for a systemic review and clinical efficacy of the Rose hip (2008; 2006, respectively).

Dandelion is shown to have a great antioxidant activity (Hu et al., 2003), exhibiting diverse biological activities that promote energy, weight loss, and reduced risk of metabolic syndrome (Jedrejek et al., 2017; González-Castejón et al., 2012; Jeon et al., 2008). Ovadje et al. (2016) conclude that dandelion root extract effects colorectal cancer proliferation which may occur through the activation of ‘multiple death signalling pathways,’ and a selective induction of apoptosis and autophagy in human pancreatic cancer cells (2012; 2012a). Signstedt (2008) found similar results with extract of Taraxacum officinale on the growth and invasion of breast and prostate cancer cells, while Yang et al. (2015) demonstrated that Dandelion extract protects human skin fibroblasts from uvb damage.

For further study of the Taraxacum (Dandelion), see Schütz, Carle, & Schieber (2006) for a systemic review on its phytochemical and pharmacological profile.

Blueberries are rich with anthocyanins and a wide variety of phytochemicals that have been shown to effect neuro-generation (Albarracin et al., 2012). Studies are showing that a neuro-generative effect also occurs with Parkinson (Chao et al., 2012; Gao et al., 2012; Strathearn et al., 2014). Blueberries regenerate neuronal aging (Shukitt-Hale, 2012), and support memory (Krikorian et al., 2010). For more on nerve regeneration, see the Research tab of Blueberry Extract.

A daily consumption of blueberries is shown to support a lower blood pressure and arterial stiffness (Johnson et al., 2015), increase natural killer cell counts (McAnulty et al., 2014), down-regulate hepatic lipogentic program (Andersson et al., 2011), and impact insulin resistance and glucose intolerance (Stull, 2016). Zhan et al. (2016) discovered the importance of blueberries on the migration, invasion, proliferation of hepatocellular carcinoma cells. Yang et al. has shown in 2001 the inhibition of carcinogenesis by dietary polyphenolic compounds.

These impressive findings support dietary supplementation with berries as a healthy approach to various Metabolic Syndrome concerns, including cancer (Vendrame et al., 2015; Seeram, N.P., 2008; Seeram et al., 2006, respectively).

The hormetic mechanism of phyto-nutrients is an exciting area of research. Scientists have discovered that small amounts of phytochemicals offer much more than nutrients. Phytochemicals offer a hormetic mechanism; a stimulation of many pathways in our body that prevents, repairs, or reverses aging and disease (Lee et al., 2014; Davinelli et al., 2012). The concept of hormesis is defined as an adoptive response of cells and organism to low dosages of phytochemicals. This adoptive response stimulates a beneficial effect in the body (Mattson, 2008, 2008a). Calabrese et al. conducted many studies on hormetic phytochemicals and vitagenes in aging and longevity, including the effect of antioxidants such as polyphenols on neuro-generation (2012, 2011, 2009). The vitagene network of genes involved in the process of repair and maintenance is thought of as the longevity assurance processes (Rattan, 2004, 1998).

Phyto Power as a dietary supplement offers a regular serving of several species of Blueberries, Rose hip, and Dandelion, including the leaves, stems, flower, and root.

See the Research tab for additional bibliography to further understand the research, findings, application and use of Blueberries, Rose hip, and Dandelion. Visit Resources on the tool bar to find helpful protocols (Library) and summaries (News).

*Double blind, crossover study: in a double blind study A study the participants and those in contract with them (assistants) are blind to the details of the study. A crossover is when at one point in the study the participants switch from taking an active substance (such as rose hip in the Andersson study) to a placebo or vice versa.

References:

Adams, L.S., Phung, S. Yee, N., Sheeram, N.P., Li, L., & Chen, S. (2010). Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res, 70(9), 3594-605. DOI: 10.1158/0008-5472.CAN-09-3565

Albarracin, S.L., Stab, B., Casas, Z., Sutachan, J.J., Samudio, I., Gonzalez, J….Barreto, G.E. (2012). Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci, 15, 1–9. DOI:10.1179/1476830511Y.0000000028

Andersson, U., Berger, K., Hogberg, A., Landin-Olsson, M., & Holm, C. (2012). Effects of rose hip intake on risk markers of type 2 diabetes and cardiovascular disease: a randomized, double-blind, cross-over investigation in obese persons. Eur J Clin Nutr, 66, 585–590. DOI:10.1038/ejcn.2011.203

Andersson, U., Henriksson, E., Strom, K., Alenfall, J., Goransson, O., Holm, C. (2011). Rose hip exerts antidiabetic effects via a mechanism involving downregulation of the hepatic lipogenic program. Am J Physiol Endocrinol Metab, 300, E111–121. DOI:10.1152/ajpendo.00268.2010

Basu, A., &  Lyons,  T.J. (2012). Strawberries, blueberries, and cranberries in the metabolic syndrome: clinical perspectives. J Agric Food Chem, 60: 5687-92. DOI:10.1021/jf203488k

Bishayee, A., Haskell, Y., Do, C., Siveen, K.S., Mohandas, N., Sethi, & G., Stoner, G.D. (2016). Potential Benefits of Edible Berries in the Management of Aerodigestive and Gastrointestinal Tract Cancers: Preclinical and Clinical Evidence. Crit Rev Food Sci Nutr, 56(10), 1753-75. DOI: 10.1080/10408398.2014.982243

Cagle, P., Idassi, O., Carpenter, J., Minor, R., Goktepe, I., & Martin, P. (2012). Effect of Rosehip (Rosa canina) extracts on human brain tumor cell proliferation and apoptosis. Journal of Cancer Therapy, 3(5), 13. . DOI:10.4236/jct.2012.35069

Calabrese, V., Cornelius, C., Dinkova-Kostova, A.T., Iavicoli, I., Di Paola, R., Koverech, A. … Calabrese, E.J. (2012). Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta, 1822(5), 753-83. DOI:10.1016/j.bbadis.2011.11.002

Calabrese, V., Cornelius, C., Cuzzocrea, S., Iavicoli, I., Rizzarell,i E., Calabrese, E.J. (2011). Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol Aspects Med, 32(4-6):279-304. DOI:10.1016/j.mam.2011.10.007

Calabrese, V., Cornelius, C., Mancuso, C., Barone, E., Calafato, S., Bates, T., Rizzarelli, E., Kostova, A.T. (2009). Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Front Biosci, 14, 376-397. Abstract

Chao, J., Leung, Y., Wang, M., & Chang, R.C. (2012). Nutraceuticals and their preventive or potential therapeutic value in Parkinson’s disease. Nutr Rev, 70, 373–86. DOI:10.1111/j.1753-4887.2012.00484.x.

Chatterjee, S.J., Ovadje, P. Mousa, M., Hamm, C., & Pandey, S. (2011). The efficacy of dandelion root extract in inducing apoptosis in drug-resistant human melanoma cells. Evid Based Complement Alternat Med, 129045. DOI:10.1155/2011/129045

Choi, U.K., Lee, O.H., Yim, J.H., Ch,o C.W., Rhee, Y.K., Lim, S.I., & Kim, Y.C. (2010). Hypolipidemic and Antioxidant Effects of Dandelion (Taraxacum officinale) Root and Leaf on Cholesterol-Fed Rabbits. Int Mol Sci, 11(1), 67-78. doi:10.3390/ijms11010067.

Christensen, R., Bartels, E.M., Altman, R.D., Astrup, A., Bliddal, H. (2008). Does the hip powder of Rosa canina (rosehip) reduce pain in osteoarthritis patients?–a meta-analysis of randomized controlled trials. Osteoarthritis Cartilage, 16, 965–972. DOI:10.1016/j.joca.2008.03.001

Chrubasik, C., Roufogalis, B.D. Muller-Lander, U., & Chrubasik, S. (2008). A systematic review on the Rosa canina effect and efficacy profiles. Phytother Res, 22(6), 725-33. DOI:10.1002/ptr.2400

Chrubasik, C., Duke, R.K., Chrubasik, S. (2006). The evidence for clinical efficacy of rose hip and seed: a systematic review. Phytother Res, 20(1), 1-3. DOI:10.1002/ptr.1729

Dinstel R.R., Cascio J., & Koukel S. (2013). The antioxidant level of Alaska’s wild berries: high, higher and highest. Int J Circumpolar Health, 72. DOI:
10.3402/ijch.v72i0.21188

Davinelli, S., Willcox, D.C., & Scapagnini, G. (2012). Extending healthy aging: nutrient sensitive pathway and centenarian population. Immun Ageing, 9, 9. DOI:10.1186/1742-4933-9-9.

Gao, X., Cassidy, A., Schwarzschild, M.A., Rimm, E.B., & Ascherio, A. (2012). Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology, 78, 1138–45. doi:  10.1212/WNL.0b013e31824f7fc4

García-Lafuente, A., Guillamón, E., Villares, A., Rostagno, M.A., & Martínez, J.A. (2009). Flavonoids as antiinflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res, 58, 537–552. DOI:10.1007/s00011-009-0037-3

Gonzalez-Castejon, M., Visioli, F., & Rodriguez-Casado, A. (2012). Diverse biological activities of dandelion. Nutr Rev, 70(9), 534-47. DOI:10.1111/j.1753-4887.2012.00509.x

Grace, M.H., Esposito D., Dunlap K.L., & Lila M.A. (2014). Comparative analysis of phenolic content and profile, antioxidant capacity, and anti-inflammatory bioactivity in wild Alaskan and commercial Vaccinium berries. J Agric Food Chem, 62(18), 4007-17. doi:10.1021/jf403810y.

Hu, C.,  & Kitts, D.D. (2003). Antioxidant, prooxidant, and cytotoxic activities of solvent-fractionated dandelion (Taraxacum officinale) flower extracts in vitro. Journal of Agricultural and Food Chemistry, 51, (1), 301–310. DOI:10.1021/jf0258858

Duke, J. (2000). The green pharmacy herbal handbook. Emmaus, PA: Rodale Inc.

Jedrejek, D., Kontek, B., Lis, B., Stochmal, A., Olas, B. (2017). Evaluation of antioxidant activity of phenolic fractions from the leaves and petals of dandelion in human plasma treated with H2O2 and H2O2/Fe. Chem Biol Interact, 262, 29-37. DOI: 10.1016/j.cbi.2016.12.003

Jeon, H.J., Kang, H. J., JungH.J. Kant, Y.S., Lim, C.J., Kim, Y.M., & Park, E.H. (2008). Anti-inflammatory activity of Taraxacum officinale. Journal of Ethnopharmacology, 115 (1), 82–88. DOI:10.1016/j.jep.2007.09.006

Jiménez, S., Gascón, S., Luquin, A., Laguna, M., Ancin-Azpilicueta, C., Rodríguez-Yoldi, M.J. (2016). Rosa canina Extracts Have Antiproliferative and Antioxidant Effects on Caco-2 Human Colon Cancer. PLoS One, 11(7), e0159136. https://doi.org/10.1371/journal.pone.0159136

Johnson, I.T., Williamson, G., & Musk, S.R.R. (1994). Anticarcinogenic factors in plant foods: A new class of nutrients? Nutr Res Rev,7, 175–204. DOI:10.1079/NRR19940011

Johnson, S.A., Figueroa, A., Navae, N. Wong, A., Ralfon, R., Ormsbee, L.T…. Arjmandi, B.H. (2015). Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: a randomized, double-blind, placebo-controlled clinical trial. J. Acad Nutr Diet, 115(3), 369-77. DOI:10.1016/j.jand.2014.11.001

Joseph, S.V., Edirisinghe, I., & Burton-Freeman, B.M. (2014). Berries: anti-inflammatory effects in humans. J Agric Food Chem, 7; 62(18), 3886-903. DOI:10.1021/jf4044056

Joseph, J., Nadeau, D., & Underwood, A. (2003). The color code: A revolutionary eating plan for optimum health. New York, NY: The Philip Lief Group, Inc. Book

Kristo, A.S., Klimis-Zacas, D., Sikalidis, A.K. (2016). Protective Role of Dietary Berries in Cancer. Antioxidants (Basel), 5(4), 37. doi:10.3390/antiox5040037

Krikorian, R., Shidler, M.D., Nash, T.A., Kalt, W., Vingvist-tymchuk, M.R., Shukitt-Hale, B., Joseph, J.A. (2010).  Blueberry supplementation improves memory in older adults. J. Agric Food Chem, 58, 3996-4000. DOI:10.1021/jf9029332

Lee, J., Jo, D.G., Park, D., Chung, H.Y., Mattson, M.P. (2014). Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system.
Pharmacol Rev, 66(3), 815-68. DOI:10.1124/pr.113.007757

Li, L., Adams, L.S., Chen, S., Killan, C., Ahmed, A., & Seeram, N.P. (2009). Eugenia jambolana Lam. [purple berries] berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells. J Agric Food Chem, 57(3), 826-31. DOI:10.1021/jf803407q

Liu, W., Lu, X., He, G., Gao, X., Xu, M., Zhang, J… Luo, C. (2013). Protective roles of Gadd45 and MDM2 in blueberry anthocyanins mediated DNA repair of fragmented and non-fragmented DNA damage in UV-irradiated HepG2 cells. Int Mol Sci, 14(11), 21447-62. DOI:10.3390/ijms141121447

Mattson, M.P. (2008). Hormesis defined. Ageing Res Rev, 7(1), 1-7. doi:  10.1016/j.arr.2007.08.007

Mattson M.P. (2008). Dietary factors, hormesis and health. Ageing Res Rev, 7(1), 43-48. doi:  10.1016/j.arr.2007.08.004

McAnulty, L.S., Collier, S.R., Landram, M.J., Whittaker, D.S., Isaacs, S.E., Klemka, J.M…  McAnulty, S.R. (2014). Six weeks daily ingestion of whole blueberry powder increases natural killer cell counts and reduces arterial stiffness in sedentary males and females. Nutr Res, 34(7), 577-84. DOI:10.1016/j.nutres.2014.07.002

Nagatomo, A., Nishida, N., Fukuhara, I., Noro, A., Kozai, Y., Sato, H., & Matsuura, Y. (2015). Daily intake of rosehip extract decreases abdominal visceral fat in preobese subjects: a randomized, double-blind, placebo-controlled clinical trial. Diabetes Metab Syndr Obes, 8, 147–156. DOI:10.2147/DMSO.S78623

Nagatomo, A., Nishida, N., Matsuura, Y., & Shibata, N. (2013). Rosehip Extract Inhibits Lipid Accumulation in White Adipose Tissue by Suppressing the Expression of Peroxisome Proliferator-activated Receptor Gamma. Prev Nutr Food Sci, 18, 85–91. doi:  10.3746/pnf.2013.18.2.085

Ovadje, P., Ammar, S., Guerrero, J.A., Arnason, J.T., Pandey, S. (2016). Dandelion root extract affects colorectal cancer proliferation and survival through the activation of multiple death signalling pathways. Oncotarget, 7(45):73080-73100. DOI:
10.18632/oncotarget.11485

Ovadje, P., Chochkeh, M., Akbari-Asl, P., Hamm, C., Pandey, S. (2012). Selective induction of apoptosis and autophagy through treatment with dandelion root extract in human pancreatic cancer cells. Pancreas, 41(7), 1039-47. DOI: 10.1097/MPA.0b013e31824b22a2

Ovadje, P., Hamm, C., Pandey, S. (2012a). Efficient induction of extrinsic cell death by dandelion root extract in human chronic myelomonocytic leukemia (CMML) cells.
PLoS One, 7(2), e30604. doi:  10.1371/journal.pone.0030604

Rattan SI. (2008). Hormesis in aging. Ageing Res Rev, 7(1), 63-78. DOI:
10.1016/j.arr.2007.03.002

Rattan, S.I. (1998). The nature of gerontogenes and vitagenes: Antiaging effects of repeated heat shock on human fibroblasts. Annals of the New York Academy of Sciences, 854, 54-60. doi:10.1111/j.1749-6632.1998.tb09891.

Ridker, P.M., Buring, J.E., Cook, N.R., & Rifai, N. (2003). C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation, 107(3), 391-7. DOI:org/10.1161/01.CIR.0000055014.62083.05

Ridker, P.M., Hennekens, C.H., Buring, J.E., & Rifai, N. (2000). C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med, 342(12), 836-43. DOI:10.1056/NEJM200003233421202

Sadeghi, H., Hosseinzadeh, S., Akbartabar Touri, M., Ghavamzadeh, M., Jafari Barmak, M., Sayahi, M., & Sadeghi, H. (2016). Hepatoprotective effect of Rosa canina fruit extract against carbon tetrachloride induced hepatotoxicity in rat. Avicenna J Phytomed, 6(2), 181-8. DOI: 10.22038/ajp.2016.5481

Schütz, K, Reinhold, C., & Schieber, A. (2006). Taraxacum—A review on its phytochemical and pharmacological profile. J Ethnopharmacol, 107, 313–323. DOI: 10.1016/j.jep.2006.07.021
Seeram N.P. (2008). Berry fruits for cancer prevention: current status and future prospects. J Agric Food Chem; 56(3): 630-5. DOI:10.1021/jf072504n

Seeram, N.P., Adam, L.S., Zhang, Y., Lee, R., Sand, D., Scheuller, H.S., & Heber, D. (2006). Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem, 54(25), 9329-39. DOI:10.1021/jf061750g

Shukitt-Hale, B. (2012).  Blueberries and neuronal aging. Gerontology, 58, 518-523. DOI:10.1159/000341101

Sigstedt, S.C., Hooten, C.J., Callewaert, M.C., Jenkins, A.R., Romero, A.E., Pullin, M.J…. Steelant, W.F. (2008). Evaluation of aqueous extracts of Taraxacum officinale on growth and invasion of breast and prostate cancer cells. Int J Oncol. 32(5), 1085-90. https://doi.org/10.3892/ijo.32.5.1085

Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., Sochor, J.(2015). Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int J Mol Sci, 16(10), 24673-706. doi:10.3390/ijms161024673

Strathearn, K.E., Youself, G.G., Grace, M.H., Roy S.L., Tambe, M.A., Ferruzzi, M.G., Wu, Q.L., … Rochet, J.C. (2014). Neuroprotective effects of anthocyanin-and proanthocyanidin-rich extracts in cellular models of Parkinson’s disease. Brain Research, 1555(25), 60-77. DOI:10.1016/j.brainres.2014.01.047

Vendrame, S., & Klimis-Zacas, D. (2015). Anti-inflammatory effect of anthocyanins via modulation of nuclear factor-κB and mitogen-activated protein kinase signaling cascades. Nutr Rev, 73(6), 348-58. DOI:10.1093/nutrit/nuu066.

Widen, C., Ekholm, A., Coleman, M.D., Renvert, S., Rumpunen, K. (2012). Erythrocyte antioxidant protection of rose hips (Rosa spp.) Oxid Med Cell Longev, 621579. http://dx.doi.org/10.1155/2012/621579

Willich, S.N., Rossnagel, K., Roll, S., Wagner, A., Mune, O., Erlendson, J…Winther, K. (2010). Rose hip herbal remedy in patients with rheumatoid arthritis – a randomised controlled trial. Phytomedicine, 17(2), 87-93. DOI:10.1016/j.phymed.2009.09.003

Winther, K., Apel, K., & Thamsborg, G. (2005). A powder made from seeds and shells of a rose-hip subspecies (Rosa canina) reduces symptoms of knee and hip osteoarthritis: a randomized, double-blind, placebo-controlled clinical trial. Scand J Rheumatol, 34(4), 302-8. DOI:10.1080/03009740510018624

Yang, Y.,  & Li, S. (2015). Dandelion extracts protect human skin fibroblasts from UVB damage and cellular senescence. Oxid Med Cell Longev, 619560. http://dx.doi.org/10.1155/2015/619560

Yang, C.S., Landau, J.M., Huang, M.T., & Newmark, H.L. (2001). Inhibition of carcinogenesis by dietary polyphenolic compounds. Ann Rev Nutr, 21, 381–406. DOI:
10.1146/annurev.nutr.21.1.381

Yousef, G.G., Brown, A.F., Funakoshi, Y., Mbeunkui, F., Grace, M.H., Ballington, J.R., Loraine, A., & Lila, M.A. (2013). Efficeint quantification of the health-relevant anthocyanin and phenolic acid profiles in commercial cultivars and breeding selections of blueberries (Vaccinium spp.). J Agric Food Chem, 61(20), 4806-15. DOI:
10.1021/jf400823s

Zhan, W., Liao, X., Yu, L., Tian, T., Liu, X, Liu, J., … Yang, Q. (2016). Effects of blueberries on migration, invasion, proliferation, the cell cycle and apoptosis in hepatocellular carcinoma cells. Biomed Rep, 5(5), 579-584. DOI:
10.3892/br.2016.774

Article by Dohrea Bardell, PhD.

Sincerely yours,

Seann

We have developed our products based on scientific research and/or the practical experience of many healthcare practitioners.  There is a growing body of literature on food based nutrition and supplements and their application in support of our health. Please use our products under the advisement of your doctor.Green Facts:

Globe_Home 3Understanding the concept of hormesis and its relationship to plant phytonutrients opens the door to a whole new medical paradigm for reducing chronic oxidative stress.  Chronic oxidative stress increases cancer, metabolic and neurodegenerative disease risk.

See Callbrese et al. (2010) illuminating paper on this most important concept:

Cellular Stress Responses, The Hormesis Paradigm, and Vitagenes: Novel Targets for Therapeutic Intervention in Neurodegenerative Disorders.

 

©2005 – 2017 BioImmersion Inc. All Rights Reserved

Dear Friends

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the United States and dietary habits account for a large percentage of the risk for developing CRC (Pitsouni et al., 2009)

Can probiotic supplementation help in the prevention of colorectal cancer?

Azcarate-Peril et al. (2011), The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer, examined the peer reviewed medical literature and conclude that probiotics help protect against the development of colorectal cancer.  In their article, New scientific paradigms for probiotics and prebiotics, Reid et al. (2003) come to the same conclusion.

Additionally, Liu et al. (2011), in their randomized clinical trial on L. plantarum, L. acidophilus, and B. longum, concluded that probiotic treatment on barrier function and postoperative infectious complications in colorectal cancer surgery demonstrated beneficial results.

Therapeutic Food Probiotics to support CRC: according to the research, take 6 days before surgery, and 10 days after surgery (Liu et al., 2011).

Both the Original and Supernatant are formulated with probiotics shown in research to confer beneficial results.

Click on any of the links above to learn more about the probiotic bacteria within each of the formulas.

References

  • Azcarate-Peril, M.A., Sikes, M., Bruno-Barcena, J.M. (2011). The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol, 301, G401-G424. doi:10.1152/ajpgi.00110.2011.
  • Liu, Z., Qin, H., Yang, Z., Xia, Y., Liu, W., Yang, J., Jiang, Y., Zhang, H., Wang, Y., Zheng, Q. (2011). Randomised clinical trial: the effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery – a double-blind study. Aliment Pharmacol Ther, 33: 50–63, 2011.
  • Pitsouni, E., Alexiou, V., Saridakis, V., Peppas, G., Falagas, M.E. (2009). Does the use of probiotics/synbiotics prevent postoperative infections in patients undergoing abdominal surgery? A meta-analysis of randomized controlled trials. Eur J Clin Pharmacol65, 561–70. PubMed
  • Reid, G., Sanders, M.E., Gaskins, H.R., Gibson, G.R., Mercenier, A., Rastall, R., Roberfroid, M., Rowland, I., Cherbut, C., Klaenhammer, T.R. (2003). New scientific paradigms for probiotics and prebiotics. J Clin Gastroenterol, 37, 105–118.

Sincerely yours,

Seann

We have developed our products based on scientific research and/or the practical experience of many healthcare practitioners.  There is a growing body of literature on food based nutrition and supplements and their application in support of our health. Please use our products under the advisement of your doctor.

Green Facts:

Globe_Home 3
Watch the new trailer An Inconvenient Sequel: Truth to Power.    The sequel to An Inconvenient Truth.  In theatres July 28, 2017.
 

©2005 – 2017 BioImmersion Inc. All Rights Reserved

Phyto Power and Cancer

April 19, 2017

Dear Friends

Phyto Power is a wildcrafted wonder from Alaska.  Grown in harsh yet pure and fertile environments, Alaskan wild berries and plants are strong and potent (Grace et al., 2014).

Alaskan potent wildcrafted berries and plants supply an abundance of antioxidants, anti-inflammatory, and anti-microbial factors shown to promote and maintain a healthy functioning body (Grace et al., 2014; Youself et al., 2013).

In fact, Dinstel et al. (2013) found the antioxidant levels of Alaska’s wild berries to be extremely high. Alaska wild berries ranged from 3 to 5 times higher in ORAC values than cultivated berries from the lower 48 states. For example, cultivated blueberries have an ORAC scale of 30. Alaska wild dwarf blueberries measure 85. When the berries were dehydrated, per gram the ORAC values even increased.

There is abundance research in the peer-reviewed journals today on health benefits of the individual constituents within Phyto Power as being important to consider for a whole host of conditions—from metabolic syndrome, to cognitive decline, to fatty liver, to high blood pressure, etc … in this Forward Thinking we will focus on cancer.

Therapeutic Food Protocol for Cancer Support.

Food Science

Blueberries, Rose hip, and Dandelion show a great potential as a daily nutritional supplement due to vast research on their effect on different cancers. For example, blueberries are shown to inhibit growth and metastatic potential (Adams et al., 2010), and manage gastrointestinal tract cancers (Bishayee et al., 2016). Rose hip has shown to effect human brain cell proliferation (Cagle et al., 2012) and antiproliferation effect on Caco-2 human colon cancer (Jiménez et al., 2016), while Dandelion was found to induce apoptosis in drug-resistant human melanoma cells (Chatterjee et al., 2011; see also Hu et al., 2003 and Jeon et al., 2008, for further reading on dandelion). Research has shown great promise for their various effects on cancer.

Phyto Power is comprised of several species of wildcrafted blueberries, Rose hips, and Dandelions. Growing wild and strong in remote areas of Alaska, these berries and plants are handpicked at the peak of their phytonutrient potential. For centuries, indigenous tribes of Alaskan natives have used these power-filled berries and plants for their daily meals as well as ceremonial and medicinal purposes.

Phyto Power is potent because of its Alaskan red Rose hip fruit and seeds, blue-purple blueberries, with twigs and leaves, and the Dandelion’s green leaves, stems, roots, and yellow flowers. These vibrant phytochemicals protect and enhance the health of both plants and humans (Joseph, Nadeau, & Underwood, 2003). James Duke’s (2000) substantial USDA phytochemical database was compiled to illustrate how (and why) the world of plants heals and protects (p. 2).

Bibliography

  • Adams, L.S., Phung, S. Yee, N., Sheeram, N.P., Li, L., & Chen, S. (2010).Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res, 70(9), 3594-605.
  • Bishayee, A., Haskell, Y., Do, C., Siveen, K.S., Mohandas, N., Sethi, & G., Stoner, G.D. (2016). Potential Benefits of Edible Berries in the Management of Aerodigestive and Gastrointestinal Tract Cancers: Preclinical and Clinical Evidence. Crit Rev Food Sci Nutr, 56(10), 1753-75.
  • Cagle, P., Idassi, O., Carpenter, J., Minor, R., Goktepe, I., & Martin, P. (2012). Effect of Rosehip (Rosa canina) extracts on human brain tumor cell proliferation and apoptosis. Journal of Cancer Therapy,3(5), 13.
  • Chatterjee, S.J., Ovadje, P. Mousa, M., Hamm, C., & Pandey, S. (2011). The efficacy of dandelion root extract in inducing apoptosis in drug-resistant human melanoma cells. Evid Based Complement Alternat Med, 129045. doi: 10.1155/2011/129045.
  • Dinstel R.R., Cascio J., & Koukel S. (2013). The antioxidant level of Alaska’s wild berries: high, higher and highest. Int J Circumpolar Health, 72. doi:10.3402/ijch.v7210.21188.
  • García-Lafuente, A., Guillamón, E., Villares, A., Rostagno, M.A., & Martínez, J.A. (2009). Flavonoids as antiinflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res, 58, 537–552.
  • Grace, M.H., Esposito D., Dunlap K.L., & Lila M.A. (2014). Comparative analysis of phenolic content and profile, antioxidant capacity, and anti-inflammatory bioactivity in wild Alaskan and commercial Vaccinium berries. J Agric Food Chem, 62(18), 4007-17. doi: 10.1021/jf403810y.
  • Jeon, H.J., Kang, H. J., JungH.J. Kant, Y.S., Lim, C.J., Kim, Y.M., & Park, E.H. (2008). Anti-inflammatory activity of Taraxacum officinale. Journal of Ethnopharmacology, 115 (1), 82–88.
  • Jiménez, S., Gascón, S., Luquin, A., Laguna, M., Ancin-Azpilicueta, C., Rodríguez-Yoldi, M.J. (2016). Rosa canina Extracts Have Antiproliferative and Antioxidant Effects on Caco-2 Human Colon Cancer. PLoS One, 11(7), e0159136.
  • Johnson, I.T., Williamson, G., & Musk, S.R.R. (1994). Anticarcinogenic factors in plant foods: A new class of nutrients? Nutr Res Rev,7, 175–204.
  • Joseph, J., Nadeau, D., & Underwood, A. (2003). The color code: A revolutionary eating plan for optimum health. New York, NY: The Philip Lief Group, Inc.
  • Kristo, A.S., Klimis-Zacas, D., Sikalidis, A.K. (2016). Protective Role of Dietary Berries in Cancer. Antioxidants (Basel), 5(4), 37. doi:10.3390/antiox5040037
  • Ovadje, P., Ammar, S., Guerrero, J.A., Arnason, J.T., Pandey, S. (2016). Dandelion root extract affects colorectal cancer proliferation and survival through the activation of multiple death signalling pathways. Oncotarget, 7(45):73080-73100.
  • Yousef, G.G., Brown, A.F., Funakoshi, Y., Mbeunkui, F., Grace, M.H., Ballington, J.R., Loraine, A., & Lila, M.A. (2013). Efficient quantification of the health-relevant anthocyanin and phenolic acid profiles in commercial cultivars and breeding selections of blueberries (Vaccinium spp.). J Agric Food Chem, 61(20), 4806-15. doi: 10.1021/jf400823s.

Sincerely yours,

Seann

We have developed our products based on scientific research and/or the practical experience of many healthcare practitioners.  There is a growing body of literature on food based nutrition and supplements and their application in support of our health. Please use our products under the advisement of your doctor.

Green Facts:

Globe_Home 3
Watch the new trailer An Inconvenient Sequel: Truth to Power.    The sequel to An Inconvenient Truth.  In theatres July 28, 2017.
 

©2005 – 2017 BioImmersion Inc. All Rights Reserved

Meat and Colorectal Cancer

September 8, 2016

Dear Friends

The two most lethal cancers are lung and colorectal cancer, respectively.  Both are clearly associated with what we consume on a regular basis (Alberg, 2003; Cummings, 1979).
Approximately 750,000 Americans die each year from lung cancer. Yet 90% would have reduced the risk of getting cancer if they simply stopped smoking.

Colorectal cancer is linked to what we eat. In particular, eating too much meat has proven to increase our risk for developing colorectal cancer (Stephen, 2007; Stephen, 1999).

Meat, eggs, and dairy –  animal based protein –  has the potential to become a carcinogen in our body (see Food Science below).

An alternative, plant based Therapeutic Food protocol, replaces animal based protein with plant protein, nurtures the body with fiber, vitamins, minerals, phytonutrients, and more.

The Therapeutic Food Protocol for support against colorectal cancer:

The idea with these two products is to use them as a meal replacement multiple time a week.  As a breakfast drink you can add the above to a tall glass, add some fresh or frozen berries, some flax seed,  and add liquid- a 50/50 blend of water and organic pineapple juice.  And, it is replacing a meal where you normally had some meat and animal derived protein like bacon, sausage, ham, eggs.  The goal is to reduce these things.

And the Therapeutic Foods do so much more.

The Be Regular (on the shopping cart you’ll see the Energy Sustain) is organic chia, amaranth, buckwheat, quinoa and millet.  There is no gluten and it tastes great.  It has a good amount of plant based complete protein, vitamin, minerals, and essential oils.

The Beta Glucan Synbiotic provides pedigreed lactic acid bacteria.  They are fermenting bacteria, not putrefying bacteria and they put an inhibitory pressure on the growth of the putrefying strains.  The probiotics reduce and bind heterocyclic amines and nitrosamines – well established in research as extremely carcinogenic molecules. One hot dog has as many nitrosamines as five cigarettes.  They are found in unprocessed meat as well:  beef, chicken, and pork.   See Food Science below.

Food Science:

Reduction in the consumption of meat results in the reduction of the risk of colon cancer.

Stephen and fellow researchers (1999) looked a why African Americans get more colorectal cancer that Native Africans.  Colon cancer is extremely rare in Africans, while it’s 50 times higher in African Americans.  And, what’s interesting, it wasn’t because the Africans ate more fiber because their modern African diet is highly processed, low in fiber and yet there has been no dramatic increase in colon cancer.  The one big difference in their diets was that the diet of African Americans is rich in meat where as the native Africans diet is so low in meat and saturated fat.  Africans diet is more plant based with very little meat and saturated fat consumed weekly.  So much so that the Africans have a total cholesterol levels averaging 139, compared to over 200 in the US.

How does the extra meat eating cause cancer?

As observed by Cummings et al. (1979), the typical American diet has high level of animal protein intake, and because of that, up to 12 grams of protein per day can escape digestion and reach the colon where it is putrefyied by putrefying bacteria.  The byproduct of the putrefaction decomposition process is the production of, among other gases, ammonia and hydrogen sulfide gases which are cytotoxic.  Hydrogen sulfide impairs cytochrome oxidase, tissue metabolism, mucus formation, and DNA methylation

The difference between plant proteins and animal proteins reaching the colon is that the animal protein contain a lot of the sulfur containing amino acids like methionine, where plant protein doesn’t and hence very low hydrogen sulfide production.

This animal protein does more than just putrefy. It causes an increase in the cancer promoting growth hormone called IGF-1 (Levine, 2014).  Remove meat, egg whites, and dairy proteins from your diet, and our bloodstream can suppress cancer cell growth about eight time better because the blood levels of IFG-1 are greatly reduced (Ornish, 2005).

It is well established in medical science that heterocyclic amines (blackened meat derived carcinogens) and nitrosamines are potent carcinogens—one hotdog has as many nitrosamines and nitrosamides as five cigarettes.  The pedigreed bacterial species in the Beta Glucan Synbiotic have been shown to neutralize these carcinogenic molecules.

Bibliography:

  • Alberg AJ, Sarnet JM. (2003). Epidemiology of lung cancer. Chest Journal; 123(1_suppl): 21S-49S.
  • Cummings et al. (1979). The effect of meat protein and dietary fiber on colonic function and metabolism. Am J Clin Nutr; 32: 2094-2101.
  • Levine et al. (2014).  Low Protein Intake is Associated with a Major Reduction in IGF-1, Cancer, and overall mortality in the 65 and Younger gut not Older Population. Cell Metab; 19(3): 407-417.
  • Ornish et al. (2005). Intensive Lifestyle changes may affect the progression of prostate cancer. The Journal Of Urology; 175: 1055-1070.
  • Stephen et al. (1999). Rarity of Colon Cancer in Africans is associated with low animal product consumption, not fiber. AJG; 94: 1373-1380.
  • Stephen et al. (2007). Why do African Americans Get More Colon Cancer than Native Africans? American Society for Nutrition; 137(1): 175S-182S.

Sincerely yours,

Seann Bardell

We have developed our products based on scientific research and/or the practical experience of many healthcare practitioners.  There is a growing body of literature on food based nutrition and supplements and their application in support of our health. Please use our products under the advisement of your doctor.

Green Facts:

Globe_Home 3Where Trump and Clinton Stand on Food: A Special Report from John Robbins
We spend more on healthcare than any country in the world, yet we have the highest rate of cancer, diabetes and heart disease of any country in the world.  The above video gives us pause for thought.

Dear Friends

The University of Hawaii Cancer Center assessed that nearly every person in Hawaii will face a diagnosis of cancer either personally or within their family at some point in their life, so says (Hawaii Cancer Facts & Figures, 2010).

The Center’s Mission is to create a world where cancer no longer exists.

Cancer is basically a non-communicable life style disease, and diet is a huge component.  How then can Therapeutic Food supplements help in the prevention cancer?


Therapeutic Foods are plant based supplements. Here is a protocol based on recent studies to support the prevention of cancer

Food Science

Epidemiological studies have consistently linked abundant consumption of fruits and vegetables to a reduction of the risk of developing several types of cancer (Boivin et al., 2009).

Boivin et al., (2009) evaluated the inhibitory effects of extracts isolated from 34 vegetables on the proliferation of 8 different tumor cell lines: breast cancer, brain tumors, kidney cancer, lung cancer, childhood brain tumors, pancreatic cancer, prostate cancer and stomach cancer.

The best by far were vegetables from the Allium (particularly garlic) and the Cruciferous (particularly broccoli) families—inhibiting these cancers almost 100%. The researchers concluded, “The inclusion of cruciferous and allium vegetables in the diet is essential for effective dietary based cancer-preventative strategies.”

Berry fruits have beneficial effects against several types of human cancers; and the evidence is overwhelming.  Their benefits are as follows:

  • Counteract, reduce and repair damage from oxidative stress and inflammation.
  • Regulating carcinogen and xenobiotic metabolizing enzymes, transcription and growth factors, inflammatory cytokines, and cellular signaling pathways of cancer cell proliferation, apoptosis and angiogenesis.
  • Sensitize tumor cells to chemotherapeutic agents by inhibiting pathways that lead to treatment resistance.
  • Provide protection from therapy-associated toxicities.

These anticancer potential benefits are related to their polyphenols (flavonoids, proanthocyanidins, gallotannis, phenolic acids), stilbenoids, lignans and triterpennoids (Seeram NP., 2008).

It is well established that glucans enhance the efficacy of anti-cancer and anti-infection immunotherapy, both in clinical and experimental conditions (Vetvocia V., 2013).

Beta-glucans, naturally occurring polysaccharides, are present as constituents of cell wall of cereal grains, mushrooms, algae, or microbes including bacteria, fungi, and yeast.  Since Pillemer et al. first prepared and investigated zymosan in the 1940s and others followed with the investigation in the 60s and 70s, researchers have well established the significant role of B-glucans on the immune system relative to cancer treament, infection, immunity, and restoration of damaged bone marrow (Yoon TJ., 2013).

The good news is that these plant based foods are shown in many studies to help in the prevention of cancer, and at the same time, help to prevent heart disease and diabetes.

Bibliography:

  • Basu A. Lyons TJ. (2012). Strawberries, blueberries, and cranberries in the metabolic syndrome: clinical perspectives. J Agric Food Chem; 60: 5687-92.
  • Boivin et al. (2009). Antiproliferative and antioxidant activities of common vegetables: A comparative Study. Food Chemistry; 112(20): 374-380.
  • Cao et al. (2014). Garlic-derived allyl sulfides in cancer therapy. Anticancer Agents Med Chem;14(6):793-9.
  • Dinstel R.R., Cascio J., & Koukel S. (2013). The antioxidant level of Alaska’s wild berries: high, higher and highest. Int J Circumpolar Health;72 doi:10.3402/ijch.v7210.21188.
  • Seeram NP. (2008). Berry fruits for cancer prevention: current status and future prospects. J Agric Food Chem; 56(3): 630-5.
  • Steinkellner et al. (2001). Effects of cruciferous vegetables and their constituents on drug metabolizing enzymes involved in the bioactivation of DNA-reactive dietary carcinogens. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis; 480-481: 285-297.
  • Vetvocla  V. (2013). Synthetic oligossacharides: clinical application in cancer therapy. Anticancer Agents Md Chem; 13(5): 720-4.
  • Yoon et al. 2013. The effects of B-glucans on cancer metastasis. Anticancer Agents Med Chem; 13(5): 699-708.

Sincerely yours,

Seann Bardell

We have developed our products based on scientific research and/or the practical experience of many healthcare practitioners.  There is a growing body of literature on food based nutrition and supplements and their application in support of our health. Please use our products under the advisement of your doctor.

Green Facts:

Globe_Home 3VERGE Sep 19-22, 2016 Santa Clara, CA

VERGE Summits are invitation-only, half-day working sessions exploring pressing issues at the intersection of technology and sustainability for companies, governments, utilities and innovators.